Content Framework Introduction
Main Description

Overview

Architects executing the Architecture Development Method (ADM) will produce a number of outputs as a result of their efforts, such as process flows, architectural requirements, project plans, project compliance assessments, etc. The content framework provides a structural model for architectural content that allows the major work products that an architect creates to be consistently defined, structured, and presented.

The content framework provided here is intended to allow TOGAF to be used as a stand-alone framework for architecture within an enterprise. However, other content frameworks exist (such as the Zachman Framework) and it is anticipated that some enterprises may opt to use an external framework in conjunction with TOGAF. In these cases, the content framework provides a useful reference and starting point for TOGAF content to be mapped to other frameworks.

The Architecture Content Framework uses the following three categories to describe the type of architectural work product within the context of use:

  • A deliverable is a work product that is contractually specified and in turn formally reviewed, agreed, and signed off by the stakeholders. Deliverables represent the output of projects and those deliverables that are in documentation form will typically be archived at completion of a project, or transitioned into an Architecture Repository as a reference model, standard, or snapshot of the Architecture Landscape at a point in time.
  • An artifact is a more granular architectural work product that describes an architecture from a specific viewpoint. Examples include a network diagram, a server specification, a use-case specification, a list of architectural requirements, and a business interaction matrix. Artifacts are generally classified as catalogs (lists of things), matrices (showing relationships between things), and diagrams (pictures of things). An architectural deliverable may contain many artifacts and artifacts will form the content of the Architecture Repository.
  • A building block represents a (potentially re-usable) component of business, IT, or architectural capability that can be combined with other building blocks to deliver architectures and solutions.

    Building blocks can be defined at various levels of detail, depending on what stage of architecture development has been reached. For instance, at an early stage, a building block can simply consist of a name or an outline description. Later on, a building block may be decomposed into multiple supporting building blocks and may be accompanied by a full specification. Building blocks can relate to "architectures" or "solutions".

    • Architecture Building Blocks (ABBs) typically describe required capability and shape the specification of Solution Building Blocks (SBBs). For example, a customer services capability may be required within an enterprise, supported by many SBBs, such as processes, data, and application software.
    • Solution Building Blocks (SBBs) represent components that will be used to implement the required capability. For example, a network is a building block that can be described through complementary artifacts and then put to use to realize solutions for the enterprise.

    The relationships between deliverables, artifacts, and building blocks are shown in Relationships between Deliverables, Artifacts, and Building Blocks .



    Figure: Relationships between Deliverables, Artifacts, and Building Blocks

    For example, an Architecture Definition Document is a deliverable that documents an architecture description. This document will contain a number of complementary artifacts that are views of the building blocks relevant to the architecture. For example, a process flow diagram (an artifact) may be created to describe the target call handling process (a building block). This artifact may also describe other building blocks, such as the actors involved in the process (e.g., a Customer Services Representative). An example of the relationships between deliverables, artifacts, and building blocks is illustrated in Example - Architecture Definition Document .



    Figure: Example - Architecture Definition Document


Content Metamodel

The content metamodel provides a definition of all the types of building blocks that may exist within an architecture, showing how these building blocks can be described and related to one another. For example, when creating an architecture, an architect will identify applications, "data entities" held within applications, and technologies that implement those applications. These applications will in turn support particular groups of business user or actor, and will be used to fulfil "business services".

The content metamodel identifies all of these concerns (i.e., application, data entity, technology, actor, and business service), shows the relationships that are possible between them (e.g., actors consume business services), and finally identifies artifacts that can be used to represent them.

Content Metamodel Overview shows an overview of the content metamodel.

Figure: Content Metamodel Overview

Content Framework and the TOGAF ADM

The TOGAF ADM describes the process of moving from a baseline state of the enterprise to a target state of the enterprise. The ADM will address a business need through a process of visioning, architecture definition, transformation planning, and architecture governance. At each stage in this process, the ADM requires information as inputs and will create outputs as a result of executing a number of steps. The content framework provides an underlying structure for the ADM that defines inputs and outputs in more detail and puts each deliverable into the context of the holistic architecture view of the enterprise.

The content framework should therefore be used as a companion to the ADM. The ADM describes what needs to be done to create an architecture and the content framework describes what the architecture should look like once it is done.

Structure of Part IV

Part IV: Architecture Content Framework is structured as follows: